A curvature theory for discrete surfaces based on mesh parallelity
نویسندگان
چکیده
We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces’ areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature.We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards.
منابع مشابه
On offsets and curvatures for discrete and semidiscrete surfaces
This paper studies semidiscrete surfaces from the viewpoint of parallelity, offsets, and curvatures. We show how various relevant classes of surfaces are defined by means of an appropriate notion of infinitesimal quadrilateral, how offset surfaces behave in the semidiscrete case, and how to extend and apply the mixed-area based curvature theory which has been developed for polyhedral surfaces.
متن کاملLectures in Discrete Differential Geometry 3 – Discrete Surfaces
We will now study discrete surfaces and build up a parallel theory of curvature that mimics the structure of the smooth theory. First, we need a definition of a discrete surface. There are many possible discrete representations in common use – in this course we will focus on triangle meshes, though much could be said about alternatives, such as point clouds, quad meshes, tensor product splines,...
متن کاملAn Efficient Geometrical Model for Meshing Applications in Heterogeneous Environments
This paper introduces a new neutral hybrid discrete (in the limit continuous) solid CAD model for meshing applications within the Integrated Computational Environments, based on subdivision surfaces. The model uses the Boundary Representation for the CAD model topology and the Butterfly Interpolating subdivision scheme for definition of underlying curves and surfaces. It is automatically derive...
متن کاملAn Adaptive Parametric Surface Mesh Generation Method Guided by Curvatures
This work presents an adaptive mesh generation strategy for parametric surfaces. The proposed strategy is controlled by curvatures and the error measured between the analytical and discrete curvatures guides the adaptive process. The analytical curvature is a mathematical representation that models the domain, whereas the discrete curvature is an approximation of that curvature and depends dire...
متن کاملDiscrete Fairing of Curves and Surfaces Based on Linear Curvature Distribution
In the planar case, one possibility to create a high quality curve that interpolates a given set of points is to use a clothoid spline, which is a curvature continuous curve with linear curvature segments. In the rst part of the paper we develop an e cient fairing algorithm that calculates the discrete analogon of a closed clothoid spline. In the second part we show how this discrete linear cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008